Stratigraphic record of Holocene coseismic subsidence, Padang, West Sumatra

Tina Dura,1 Charles M. Rubin,2,3 Harvey M. Kelsey,4 Benjamin P. Horton,1,3 Andrea Hawkes,5 Christopher H. Vane,6 Mudrik Daryono,2 Candace Grand Pre,1 Tyler Ladinsky,4 and Sarah Bradley7

Received 5 January 2011; revised 10 August 2011; accepted 16 September 2011; published 23 November 2011.

[1] Stratigraphic evidence is found for two coseismic subsidence events that underlie a floodplain 20 km south of Padang, West Sumatra along the Mentawai segment (0.5°S–0.3°S) of the Sunda subduction zone. Each earthquake is marked by a sharp soil-mud contact that represents a sudden change from mangrove to tidal flat. The earthquakes occurred about 4000 and 3000 cal years B.P. based on radiocarbon ages of detrital plant fragments and seeds. The absence of younger paleoseismic evidence suggests that late Holocene relative sea level fall left the floodplain too high for an earthquake to lower it into the intertidal zone. Our results point to a brief, few thousand year window of preservation of subsidence events in tidal-wetland stratigraphic sequences, a result that is generally applicable to other emergent coastlines of West Sumatra.

1. Introduction

[2] The closely spaced failures of the Sunda megathrust in 2004 and 2005 raised the possibility that the stresses imposed by these earthquakes have brought the megathrust immediately to the south, the Mentawai segment, closer to failure (Figure 1a) [Nalbant et al., 2005; Natawidjaja et al., 2007; Sieh et al., 2008]. Sequential uplift and tilt recorded in the corals of the outer arc islands overlying the Mentawai segment provide evidence for great earthquakes in A.D. 1797 (Mw 8.5–8.7) and A.D. 1833 (Mw 8.6–8.9) [Natawidjaja et al., 2006; Briggs et al., 2006]. The coral studies along with historical records of shaking and tsunami inundation at Padang (Figure 1a) suggest that all or most of the interface between 1°S and 5°S ruptured during these great earthquakes [Newcomb and McCann, 1987; Zachariasen et al., 1999, 2000; Natawidjaja et al., 2006]. Composite forward models show coseismic uplift of the outer arc islands of ~1 m in 1797 and ~3 m in 1833, and subsidence of the adjacent coastline near Padang of ~1 m in 1797 and ~1.5 m in 1833 [Natawidjaja et al., 2006; Sieh et al., 2008]. The tendency of the coastline of West Sumatra to coseismically subside is supported by GPS observations from the 2005 Nias earthquake (Mw 8.7) that document 1 m of subsidence landward of the trench [Briggs et al., 2006].

[3] Recent studies show that sufficient strain has accumulated on the Mentawai segment since the 1797 and 1833 events to produce a Mw > 8.0 earthquake, which would affect the coast of West Sumatra and the provincial capital of Padang (Figure 1a) [Nalbant et al., 2005; Sieh et al., 2008; Bürgmann, 2009]. Indeed, the 30 September 2009 Mw 7.6 earthquake near Padang and the 25 October 2010 Mw 7.7 earthquake and tsunami that affected the Mentawai Islands highlight the seismic risk along West Sumatra, although neither earthquake relieved the strain accumulated along the 1797 and 1833 rupture patches [McCloskey et al., 2010].

[4] Paleogeodetic evidence from fringing coral reefs directly above the locked part of the Sunda megathrust have produced a robust record of coseismic uplift along the Mentawai segment during ruptures of the last thousand years [Zachariasen et al., 1999; Natawidjaja et al., 2006; Sieh et al., 2008], but this method can only be applied to areas with coralline coasts. Here, adapting a strategy that has been applied for over 30 years [Ovenshine et al., 1976; Combellick, 1986; Atwater, 1987; Nelson et al., 1996; Atwater and Hemphill-Haley, 1997; Kelsey et al., 2002; Hawkes et al., 2011] we use subsidence stratigraphy as an aid in assessing Holocene earthquake recurrence on the coseismically subsiding coastline adjacent to the Mentawai segment of the megathrust. On coastlines with net Holocene submergence, the stratigraphic record reflects the response of Earth’s
surface to the earthquake deformation cycle. The earthquake cycle is represented by a unique series of instantaneous relative sea level (RSL) rises (coseismic land subsidence) interspersed between extended periods of RSL fall (interseismic land uplift). When this cycle is accompanied by regional RSL rise due to eustatic or isostatic processes, the accommodation space created by the net submergence of the coastline allows for a suite of buried soil-mud couplets to form in low-energy coastal wetland environments (Figure 2).

The application of subsidence stratigraphy has produced geologic evidence of paleoearthquakes in the tidal wetlands of Cascadia [e.g., Atwater, 1987; Atwater and Hemphill-Haley, 1997; Nelson et al., 2008; Hawkes et al., 2011], Alaska [e.g., Ovenshine et al., 1976; Combellick, 1986; Hamilton and Shennan, 2005], Chile [Cisternas et al., 2005], Japan [e.g., Sawai et al., 2004], and New Zealand [e.g., Hayward et al., 2004].

Coastlines with net Holocene emergence (i.e., coasts with a mid-Holocene sea level highstand) also have the potential to preserve RSL changes representative of the earthquake deformation cycle, but the lack of accommodation space during late Holocene RSL fall makes preservation more difficult. On prograding emergent coastlines, tsunami deposits draped over beach-ridge and inset terrace sequences provide evidence of regional earthquakes in Sumatra [Monecke et al., 2008] and Thailand [Jankaew et al., 2008]. Records of localized coseismic subsidence and accompanying RSL rise (buried soil-mud couplets) on emergent coastlines are scarce, and where discovered, often fragmentary [Nelson et al., 2009]. In this paper, we present a brief record of coseismic subsidence preserved in the stratigraphy of a coastal freshwater lowland with net Holocene emergence and place it in the context of the regional record of Holocene RSL change (Figure 1b). Our record illustrates
the limited preservation window for subsidence events along the Mentawai segment of the subduction zone.

2. Setting

Sumatra sits on top of the Sunda Plate that lies adjacent to the subducting Indo-Australian Plate (Figure 1a). Recent GPS geodesy shows that islands southeast of Sumatra, at Java, are converging with the Indo-Australian Plate at a rate of 59 mm/yr [Michel et al., 2001; Bock et al., 2003; Prawirodirdjo and Bock, 2004]. Near Sumatra, the convergence is oblique to the trench and relative plate motions are partitioned into nearly trench perpendicular convergence along the megathrust at 53 mm/yr and trench parallel, dextral slip along the inland Sumatran fault at ∼11–28 mm/yr [Genrich et al., 2000; Sieh and Natawidjaja, 2000; Subarya et al., 2006]. Based on satellite imagery and field relations, we found no evidence of Holocene active upper plate faulting and have no reason to suspect that these faults are responsible for coastal subsidence.

Our study focuses on a coastal freshwater lowland 20 km south of the provincial capital of West Sumatra, Padang (Figure 1b). The study area, 1 km inland from the coastal village of Sungai Pinang, is located on an emergent floodplain that is now transected by the modern Pinang River (Figure 3). The area lies between 1 and 3 m above modern mean tidal level (MTL). The Sungai Pinang coastal floodplain is ideal for the preservation of subsidence stratigraphy because it is a low-energy environment protected from storm waves by coastal headlands to the north that create an embayment at the mouth of the Pinang River. Surveys determined that the modern tidal range at Sungai Pinang is about 1 m.

Comparable modern intertidal environments to the buried soil-mud couplets are absent at Sungai Pinang and elsewhere in West Sumatra because of extensive land reclamation by European colonization and more recently by clearance for aquaculture [Whitten et al., 1997]. However, studies on the modern mangrove environments of Sulawesi, Indonesia, which also have a microtidal regime, have shown mangrove plants extending hundreds of meters inland from the coast [Horton et al., 2007; Engelhart et al., 2007]. Mangroves can grow from mean tide level (MTL) to highest astronomical tide (HAT) [Grindrod, 1985, 1988; Ellison, 1989, 2005; Kamaludin, 1993; Horton et al., 2005], although they do not produce enough organic matter at their seaward fringe for a peat to accumulate [Matthijs et al., 1999; Engelhart et al., 2007]. In modern intertidal environments, the highest percentage of organics is found between mean high water (MHW) and HAT (which is a range of 0.5 m in Sungai Pinang) dominated by the mangrove species Rhizophora, Ceriops, and Aveccenia [Grindrod, 1985, 1988; Ellison, 1989, 2005; Kamaludin, 1993; Matthijs et al., 1999; Horton et al., 2007; Engelhart et al., 2007].

3. Methods

3.1. Lithostratigraphy

The sudden submergence and burial of vegetated wetland soils results in a distinctive lithostratigraphic
sequence that provides evidence for repeated plate boundary earthquakes. We infer that if the Mentawai segment of the Sunda Megathrust has ruptured repeatedly in the Holocene, coastal wetland sites such as Sungai Pinang subsided coseismically and should have preserved recurring, abrupt RSL change as a series of buried soils.

[10] We examined the stratigraphy in 20 gouge cores along two cross-section lines, each about 200 m long (Figure 3). Cores were collected with a 1 m long, 25 mm diameter, half-cylinder gouge corer. The cores were logged to a depth of 3–5 m along the transects in order to test for lateral continuity of stratigraphic horizons. In addition, we logged three cores in a lowland 500 m seaward from the study area. Soils were described in the field using the Troels-Smith [1955] method for the description of organic-rich sediment. In our investigation, the term “soil” refers to dark horizons with visible woody and herbaceous fragments and humified organic matter that made up at least 25% of the sedimentary unit. The overlying mud was distinguished by its lack of organic matter, a change in color to blue-gray (Gley2 8/5B) or gray (Gley2 8/5B) (Munsell Soil Color Chart, 2009) and a clay to silty clay mineral content. Using methods adapted from Kelsey et al. [2002], the soils were correlated among the 20 cores on the basis of depth below ground surface, lithostratigraphy, stratigraphic separation, and the thickness of sediment from the top of one buried soil to the next (Figure 4).

[11] The criteria used to identify soils buried by coseismic subsidence follow Nelson et al. [1996]: (1) a stratigraphic transition between soils and overlying mud that represents a paleoenvironmental change from mangrove to tidal flat or subtidal environments; (2) a sharp (<1–3 mm) contact separating the soils from the overlying mud, indicating a rapid change in the depositional environment; (3) lateral continuity of the soil horizons throughout the study area indicating that the RSL rise affected the entire coastal lowland; and (4) a >20 cm thickness of the mud interval separating the soils, representing prolonged submergence of the coastline.

[12] We used a digital auto-level to establish core elevations and the height of wave cut notches (Figure 4a). All core sites and coastal profile locations were surveyed relative to each other with an error of <±5 cm. We related these elevations to local mean tide level (MTL), determined by repeated surveys of local tidal variation.

3.2. Geochemistry

[13] We used stable carbon isotopic composition (δ13C) and the ratio of total organic carbon (TOC) to total nitrogen (C:N) in bulk-organic sediments to identify the transition of depositional environments from freshwater to brackish to marine [e.g., Wilson et al., 2005; Bouillon et al., 2008; Kemp et al., 2010; Ku et al., 2007; Lamb et al., 2006, 2007]. Based on data extrapolated from a study conducted on mangrove swamps in French Guiana (latitude 4°), δ13C of wood and leaves from mangrove environments have δ13C values of −30.1 to −27.9‰, while C:N ratios range from mean values close to 20 for leaves and 50 for wood [Marchand et al., 2005]. In contrast, organic material from algae and mangrove litter that falls on the tidal flat at the seaward extent of the mangrove swamp is typically 13C-enriched and yields δ13C values between −24 to −10‰ and has low (>20) C:N ratios [Ambler et al., 1994; Bouillon et al., 2008]. There may be some overlap in δ13C due to plant type, sediment mixing, and decomposition [Lamb et al., 2007; Kemp et al., 2010].

[14] We analyzed δ13C and TOC for samples collected from buried soils and overlying muds in core 15. In this preliminary analysis, we sampled at 1 cm intervals above the upper buried soil and also within and above the lower two buried soils. Using the method of Kemp et al. [2010], sediment samples (0.5 g) were treated with 5% HCL (100 ml) for 18 h, washed three times with deionized water (500 ml), dried in an oven at 40°C overnight and milled to a fine
powder. C:N ratios were analyzed on the same instrument; the ratios are calibrated through acetanilide standard. Replicate analysis of well-mixed samples indicated a precision of + <0.1‰ (1 SD). All TOC and C:N values are expressed on a weight ratio basis and the N values used herein represent the combined total organic and inorganic content.

3.3. Radiocarbon Dating

Plant macrofossils were collected from the upper few centimeters of the buried soils to provide maximum limiting radiocarbon ages of soil burial. To reduce the likelihood of analyzing detrital material that died a significant time before burial, we followed the methodology of Nelson et al. [1995].

Figure 4. (a) Coast perpendicular profile including beach profile A–A’ and coast perpendicular core transect B–B’ (see Figure 1b and Figure 3 for locations). Beach and core elevations are relative to mean tidal level (MTL). (b) The B–B’ and C–C’ core transects include the simplified stratigraphy of cores with three soils highlighted: the lowest soil, middle soil, and upper soil. The dashed line shows inferred correlations between soils. (c) Detail of core 15 stratigraphic relations and probability density distributions for calibrated radiocarbon dates (ages were calibrated and errors were calculated using OxCal radiocarbon calibration software [Bronk Ramsey, 2009] with the IntCal04 data set of Reimer et al. [2004]).
and Kelsey et al. [2002] and only collected samples that were so delicate (e.g., seeds, leaf parts) that they would have been broken and made unidentifiable by significant transport or significant time.

[16] The timing of soil burial was calculated from calibrated radiocarbon dates. If two or more radiocarbon ages are available, we report the youngest age range as the closest approximation to soil burial. Radiocarbon ages were calibrated using OxCal radiocarbon calibration software [Bronk Ramsey, 2009] with the IntCal04 data set of Reimer et al. [2004]. Calibrated age ranges are shown with two standard deviations, where years ‘before present’ (B.P.) is years before A.D. 1950.

4. Results

[17] Elevated wave-cut notches 250 m inland have an elevation of 3.0–3.8 m above modern mean high tide (3.5–4.3 m above MTL) (Figure 4a). The main coring location was >1 m above MTL and 1 km inland from the coast.

[18] Sediments in the Sungai Pinang coastal wetland consisted of interbedded soils and clastic deposits (Figure 2b). Eight of the 20 cores contained a complete sequence of buried soils, six contained only the middle and lowest buried soils, and the remaining six cores contained only the lowest buried soil. Of the 43 contacts observed between buried soils and overlying units, the majority of the contacts (n = 39) were sharp (<3 mm) (Table 1). We suggest that bioturbation is minimal due to the rapid deposition of sediment following coseismic subsidence. We did not observe a sandy deposit overlying the buried soils and hence did not document evidence of tsunami inundation. The sheltered estuarine setting of Sungai Pinang, which today is >1 km inland of the embayment, likely precluded transport of tsunami sand to the study area. There was no evidence of additional buried soils seaward of our study area. Cores D and E, taken from a lowland 500 m from the modern shoreline, met core refusal at ~3 m on a sand base and contained a sequence of mud and sand with traces of organics (Figure 4a).

[19] The lowest buried soil is the most laterally continuous and the thickest of the three soils. It is preserved in 19 of 20 cores with a range of ~0.5 m to 0.9 m MTL. The presence of mangrove derived woody organic matter within the lowest buried soil of core 15 is implied by low δ13C ranging from ~28.3 to ~29.2‰, TOC values of 6.1–10.8% and elevated C:N values >60 (Figure 5). The youngest of three radiocarbon dates from woody and herbaceous fragments of the lowest buried soil in core 15 (Figure 4c) constrain the onset of soil burial to a maximum of 4010–4240 cal years B.P. (Table 2). The lowest buried soil is sharply overlain by a blue-gray to gray mud. We infer that the mud component represents more intertidal conditions with slightly higher δ13C values, lower TOC (<0.5%) and a fall in C:N (<13).

[20] The middle buried soil is the thinnest of the three soils and separated from the lowest buried soil by an average of 0.5 m of sediment. The elevation of the middle buried soil ranged from ~0.2 to 1.4 m MTL. The thickness of the middle soil and its consistent separation from the lowest soil aided in correlation. The middle buried soil is present in both the B–B’ core transect and the C–C’ core transect but is not well preserved in lower elevation cores (cores 5, 16, and 19) near the Pinang River, which probably eroded the soil via channel migration. This erosion is also reflected in the anomalously low elevations of the lowest soil in cores near the river. The younger of two radiocarbon dates from woody and herbaceous fragments collected from core 15 constrain the timing of soil burial to a maximum of 3160–3340 cal years B.P. Similar to the lowest buried soil, the middle soil is overlain along a sharp contact by a blue-gray mud. An increase in marine conditions are indicated in the overlying mud by the geochemistry, which shows high δ13C values and low C:N ratios.

[21] The upper buried soil is separated from the middle buried soil by an average of 1 m of sediment and is found with an elevation range of 0.6–2.2 m MTL. The upper buried soil is discontinuous. It is better preserved in cores with higher elevations distant from the Pinang River (Figure 6). The upper buried soil is difficult to identify because it lies close to the plow zone, but based on intact stratigraphy above the soil in cores 8, 10, 14, and 15 and consistent separation from the lowest soil, it is confident in our correlation. The upper buried soil coincides with a rise in TOC values and variable C:N and δ13C values (~29.1 to ~27.1‰), which suggests a return to a mangrove dominated environment. An increase in the influence of marine sourced organic matter, inferred from both elevated δ13C and diminished C:N values, is found above the upper soil. Plant fragments from the upper buried soil in core 15 yielded two modern radiocarbon ages. An additional upper buried soil radiocarbon age calculated from seeds in core 14 yielded an age of 1480–1640 cal years A.D.

5. Evidence for Plate Boundary Earthquakes

[22] The stratigraphic record of the Sungai Pinang lowlands contains two buried soils (lowest and middle), that satisfy multiple criteria of Nelson et al. [1996] for the

<table>
<thead>
<tr>
<th>Table 1. Buried Soil Attributes and Criteria for Coseismic Burial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
</tr>
<tr>
<td>Elevation range of buried soil relative to MTL (m)</td>
</tr>
<tr>
<td>Number of cores that contain buried soil</td>
</tr>
<tr>
<td>Abruptness of soil/mud contact</td>
</tr>
<tr>
<td>Average thickness of sediment overlying buried soil (m)</td>
</tr>
<tr>
<td>Criteria For Coseismic Burial</td>
</tr>
<tr>
<td>Abrupt lithostratigraphic transition at soil/mud contact</td>
</tr>
<tr>
<td>Sharp soil/mud upper contact (<1–3 mm)</td>
</tr>
<tr>
<td>Permanence of RSL rise (>10 cm of mud overlies buried soil)</td>
</tr>
<tr>
<td>Lateral extent of soil/mud contact (>100,000 m²)</td>
</tr>
</tbody>
</table>

*b Soil elevations were measured by leveling to geodetic benchmarks.
*b Sharp denotes stratigraphic transition over <1–3 mm.
coseismic origin of soil burial (Table 1). The lateral continuity of the lowest and middle buried soil horizons indicates that the entire mangrove wetland (i.e., 120,000 m2) was affected by sudden rises in RSL.

23 The properties of the two buried soils and of the overlying mud are similar throughout the Sungai Pinang lowland. The organic soils found in the stratigraphy of the study area suggest that the soils accumulated on the landward edges of the mangrove swamp that formerly covered the coastal lowland. Early to mid-Holocene gradual RSL rise along the coast of West Sumatra, similar to other regions of southeast Asia, allowed these soils to aggrade and create a thick mangrove soils, filling low-lying areas [Streif, 1979; Bosche, 1988; Somboon and Thiramongkol, 1992; Kamaludin, 1993; Horton et al., 2005]. The lowest and middle buried soils both have an elevation range of ~1.5 m due to post-depositional processes such as compaction [Törnqvist et al., 2008], as well as original land surface relief [cf. Atwater, 1987]. Assuming the uniform burial of a mangrove surface with ~1 m of relief suggests subsidence on the order of 1 m would have been required to lower these soils into tidal flat elevations. Similar subsidence values along the coastline of West Sumatra were modeled by Natawidjaja et al. [2006] and Sieh et al. [2008] for the great earthquakes of A.D. 1797 and 1833.

24 The sharp contacts separating the lowest and middle buried mangrove soils from overlying mud provide further evidence that the soils were abruptly submerged during a sudden rise in RSL caused by coseismic subsidence of the coastline. Longer-term RSL changes from eustatic and/or...

Table 2. Sungai Pinang Radiocarbon Age Determinationsa

<table>
<thead>
<tr>
<th>Buried Soil</th>
<th>Sample ID</th>
<th>14C Years B.P.b</th>
<th>14C Age Range, 2σb</th>
<th>Date</th>
<th>Sample Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>LF.09.15.110</td>
<td>135 ± 30</td>
<td>0–279</td>
<td>11.30.09</td>
<td>Two detrital branches, lengths = 5 mm and 13 mm</td>
</tr>
<tr>
<td>Upper</td>
<td>LF.09.15.111</td>
<td>165 ± 25</td>
<td>0–285</td>
<td>11.30.09</td>
<td>Woody branch, 8 mm × 1 mm × 0.5 mm</td>
</tr>
<tr>
<td>Upper</td>
<td>LF.09.14.84.5</td>
<td>330 ± 30</td>
<td>1480–1640 AD</td>
<td>4.19.10</td>
<td>Seeds</td>
</tr>
<tr>
<td>Middle</td>
<td>LF.09.15.292</td>
<td>3030 ± 30</td>
<td>3160–3340</td>
<td>4.19.10</td>
<td>Small detrital wood fragments</td>
</tr>
<tr>
<td>Middle</td>
<td>LF.09.15.290A</td>
<td>3570 ± 30</td>
<td>3770–3940</td>
<td>11.30.09</td>
<td>Small detrital wood fragments</td>
</tr>
<tr>
<td>Lower</td>
<td>LF.09.15.326</td>
<td>3780 ± 30</td>
<td>4010–4240</td>
<td>11.30.09</td>
<td>1 × 2 cm horizontal wood fragment</td>
</tr>
<tr>
<td>Lower</td>
<td>LF.09.15.327</td>
<td>3900 ± 35</td>
<td>4190–4420</td>
<td>11.30.09</td>
<td>Complete branchlet</td>
</tr>
<tr>
<td>Lower</td>
<td>LF.09.15.330</td>
<td>4410 ± 35</td>
<td>4860–5270</td>
<td>11.30.09</td>
<td>5 detrital wood fragments</td>
</tr>
</tbody>
</table>

aSamples were analyzed at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS) in Woods Hole, MA.
bRadiocarbon ages reflect radiocarbon years before present (14C cal years B.P.) where present is A.D. 1950. Ages were calibrated and errors were calculated using OxCal radiocarbon calibration software [Bronk Ramsey, 2009] with the IntCal04 data set of Reimer et al. [2004].
The gradational upper contact from the mud to the middle buried soil suggests a prolonged submergence during which the depositional environment was significantly different. Although variable, the geochemistry results suggest an increase in the influence of marine sourced organic matter in the mud overlying the soil.

Figure 6. Location of cores containing the upper buried soil. The cores containing the upper buried soil are included in a contour map showing the depth from the surface (relative to MTL) of the upper contact of the upper buried soil, shown in italics below the core number. Figure 3 photograph was taken looking east-southeast from the road overlooking the core transects.

6. Preservation of Subsidence Events

An alternative hypothesis for the origin of burial of the upper soil is river inundation. A contour map of the elevation of the upper contact of the upper buried soil shows the soil is only preserved near the base of the highlands that border the study area (Figure 6). We do not document the upper buried soil in low elevation cores along the Pinang River and instead find a higher concentration of medium to coarse-grained sand in the upper sections of cores 16, 19, and 5. It is likely that the higher relative elevation of the upper buried soil at the foot of the highlands protected it from the flooding of the river during the late Holocene, allowing the soil to develop at the foot of the highlands on a topographically subdued alluvial fan until deposition from one or several large floods buried the soil.
RSL rise in Southeast Asia. The early to mid-Holocene rise in RSL that made the preservation of coseismic events possible is accounted for by the eustatic contribution to RSL during the final stage of deglaciation [Milne et al., 2005]. A prominent feature of southeast Asia Holocene sea level records is the mid-Holocene highstand [Geyh et al., 1979; Tjia, 1996; Scoffin and Le Tissier, 1998; Hanebuth et al., 2000], which in Western Sumatra, varies in timing and magnitude from 3000 to 5000 cal years B.P., and +6 to +2 m above present-day sea levels [Horton et al., 2005].

We infer that the lack of pre-4200 years B.P. events preserved in the lowest aggrading soil is likely the result of rapid (~5.5 mm/yr) early to mid-Holocene sea level rise from ~9000 years B.P. that allowed mangrove vegetation to keep pace [Morris et al., 2002; Kirwan and Guntenspergen, 2010], but did not create the lasting submergence that occasions mud deposition in a tidal flat. InstANCES of coseismic subsidence were not preserved in the coastal stratigraphic record as eustatic RSL rose rapidly and mangrove vegetation kept pace. Alternatively, there may have been instances of preservation of coseismic subsidence events in pre-4200 years B.P. deposits during rapid RSL rise, but those deposits would have been seaward of our paleoseismic site and either eroded in the wave zone during RSL rise or buried by prograding coastal clastic deposits.

The coseismic subsidence that buried the thick lowest soil occurred as the eustatic contribution to RSL diminished in the mid Holocene [Mitrovica and Milne, 2002]. As a result of the more gradual RSL rise, mud was able to accumulate above the lowest soil immediately after coseismic subsidence. As interseismic strain raised the intertidal mud back into mangrove elevations, the middle buried soil accumulated. Unlike the lowest soil, the middle soil aggraded slowly due to gradual RSL rise and the soil is thinner. But, similar to the lowest buried soil, the perfect combination of coseismic subsidence and slow sea level rise allowed mud deposition, and hence preservation of the middle buried soil. The wave cut notch observed inland suggests that the mid-Holocene highstand reached about 3.5–4.3 m above MTL before sea level rise slowed and then began to fall.

Thus, our paleoseismic data do not capture any post 3000 cal year B.P. earthquakes, including the historical earthquakes of 1797 and 1833. Paleoseismic data do not record post 3 ka earthquakes because RSL has been gradually rising during the late Holocene at ~1 mm/yr, a fall driven by ocean siphoning, a process driven by the flux of meltwater from far-field equatorial regions into areas vacated by subsiding forebulges at the periphery of deglaciation centers [Mitrovica and Milne, 2002; Milne et al., 2005].

7. Subduction Zone Earthquake Recurrence

We document two subduction zone earthquakes on the Mentawai segment that are roughly 1000 years apart. These earthquakes were large events that subsided the coastline sufficiently to be preserved in the coastal wetland record. Following the suggestion of Sieh et al. [2008], it is possible that each of these earthquakes may be culminating supercycle earthquakes that were preceded by smaller subduction zone earthquakes in the preceding 1000 years. These smaller earthquakes would have involved commensurate more limited rupture parches, and the earthquakes did not leave a paleoseismic record in subsidence stratigraphy. Therefore the 4200 and 3100 cal years B.P. earthquakes may be the largest earthquakes in this time interval to rupture the Mentawai segment, but not the only earthquakes to do so.

8. Conclusions

The coastal lowlands of western Sumatra preserve evidence of two Holocene ruptures (4200 and 3100 cal years B.P.) of the Mentawai segment of the Sunda megathrust. The earthquakes are represented by laterally extensive buried soils within the Sungai Pinang coastal lowland. These ruptures of the megathrust resulted in coseismic subsidence of the coastline that inundated existing marsh mangrove soils and buried them with fine-grained intertidal mud. In equatorial sites such as the coast of West Sumatra, the rise in RSL up to the mid Holocene created the accommodation...
space necessary for the preservation of a robust record of mid-Holocene earthquakes, but a fall in RSL since the mid-Holocene highstand (~3000 years B.P.) precluded the preservation of late Holocene subsidence stratigraphy.

[36] Acknowledgments. We thank D. Natawidjaya and Bambang Suwargadi for logistical support and K. Sieh and L. Ely for helpful discussions. B. Atwater and R. Briggs provided constructive reviews that contributed substantially to improving the manuscript. This work was supported by funding from National Science Foundation (EAR 0809392, 0809417, 0809453) awarded to C. Rubin, B. Horton, and H. Kelsey. Additional support was provided by Central Washington University, Lembaga Ilmu Pengetahuan Indonesia (LIPI), and National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS). The paper is a contribution to IGCP project 588 and EOS contribution number 26.

References

Geyh, M. A., H. Streif, and H. Kudraus (1979), Sea-level changes during the late Pleistocene and Holocene in the Strait of Malacca, Nature, 278, 441–443, doi:10.1038/278441a0.

Whitten, T., S. J. Damanik, A. Anwar, and N. Hisyam (1997), The Ecology of Sumatra, 583 pp., Tuttle, North Clarendon, VT.

