Conservation of surface and ground water in a Western watershed experiencing rapid loss of irrigated agricultural land to development

Dr. Rob Van Kirk, Humboldt State University, Project Director
Brian Apple, Humboldt State University
Dr. J. Mark Baker, Humboldt State University
Dr. Yvonne Everett, Humboldt State University
Dr. Brad Finney, Humboldt State University
Lora Liegel, Humboldt State University
Veronica Orosz, Humboldt State University
Kimberly Peterson, Humboldt State University
Kim Ragotzkie, Henry’s Fork Foundation
Dale Swenson, Fremont-Madison Irrigation District
Amy Verbeten, Friends of the Teton River

Funded by U.S. Department of Agriculture
Outline

• Project objectives
• Accomplishments to date (and new results)
• Major conclusions
• Education/outreach plan (Amy and Veronica)
Project Objectives

1. Model ground and surface water flow under historic, current and future land and water use scenarios.
2. Identify socioeconomic factors that determine water use on formerly irrigated land that has been developed and on irrigated land in proximity to development.
3. Provide information on hydrology and water use to decision-makers and stakeholders.
4. Develop strategies to increase water availability for agriculture while enhancing ecological benefits in key stream reaches.
5. Train an interdisciplinary team of graduate students.
Accomplishments to date

1. Model ground and surface water flow (major results follow)
 • Lower watershed model currently being calibrated
 • Teton Valley scenarios nearly complete
2. Identify socioeconomic factors that determine water use
 • Analysis completed; one paper submitted for publication
 • Subdivision water use analysis completed (results to follow)
3. Provide information on hydrology and water use
 • Extensive information provided to USBR special study
 • Materials and plans being prepared (Amy and Veronica)
4. Develop strategies to increase water availability for agriculture while enhancing ecological benefits in key stream reaches
 • 1st draft completed (Amy and Veronica)
5. Train an interdisciplinary team of graduate students
 • Two M.S. thesis defenses completed, one thesis completed
 • All students (including Veronica) have presented results at a major water conference
Hydrologic Modeling Results: Surface diversion budget

- Surface return in basin, 65,000
- Canal and sprinkler ET, 16,000
- Crop ET, 315,000
- GW Return in basin, 230,000
- GW Outflow, 574,000

Total diversion = 1,200,000 a-f

- Less than 30% of diverted water is consumptively used
- 2/3 of diverted water recharges aquifers
Major Hydrologic Modeling Results

• Canal seepage accounts for majority of recharge
• Total diversion has decreased about 20% since 1978
• Recharge has decreased by about the same amount
• River reach gains have also decreased
• Recharge to regional aquifer has decreased
• Decreased diversion is due largely to increased application “efficiency” (sprinkler versus surface methods); less water is required to irrigate with sprinklers
• Only about 5% of irrigable land has been removed for development since 1970 (map in Amy’s talk)
Reach gains in lower Teton and HF

Reach gain = Q at bottom – Q at top + diversions – surface return
Reach gains in lower Teton and HF

Annual means: Ashton to St. A.: 30,096 a-f; to Rexburg: 147,717 a-f
Reach Gain Hydrographs

- HF Ashton to St. Anthony
- Teton and HF St. A to Rexburg
Analysis of water temperature data to identify important reaches of groundwater contribution in lower Henry’s Fork
Locations of water temperature recorders during 2010
Conclusions from reach gain analysis

• Large groundwater inputs immediately downstream of St. Anthony
• Large groundwater inputs in lower NF Teton and HF below Parker
• GW inputs moderate water temperature (cooler in summer, warmer in winter, lower diurnal fluctuations)
• GW inputs greatest in mid- to late-summer
• GW inputs derive primarily from irrigation return flow
• Aquatic system in lower HF and lower Teton driven by irrigation-influenced hydrology
• GW returns have declined substantially since 1970s
Hydrologic Modeling: Teton Valley, 6 major Teton Range tributaries
Teton Valley Model Scenarios

Natural: pre-irrigation conditions
Flood: simulated flood irrigation
Actual: actual conditions experienced 1979-2008
Sprinkler: current condition (90% sprinkler application)
Pipeline:
 • divert only what crops can use
 • up to maximum system capacity and supply
 • deliver and apply with 100% efficiency
Teton Valley Model Results: Water Budget

![Graph showing water budget for different scenarios: Natural, Flood, Actual, Sprinkler, Pipeline. Each scenario is divided into components: Surface Flow, Channel/Riparian ET, Stream Seepage, Canal Seepage, Application Seepage, Crop ET. Relative volumes are compared.]
Teton Valley Model Results: streamflow

- Trail Creek: mean number of days surface flow is continuous across losing reach
Teton Valley Model Results: streamflow

- Teton Creek: mean number of days surface flow is continuous across losing reach
Teton Valley Model Results: GW recharge
Conclusions from Teton Valley model

• Irrigation practices have lead to a large increase in groundwater recharge

• Placing canals in pipes could
 – Leave slightly more water in the tributaries
 – substantially increase water available for crops/landscaping
 – Decrease groundwater recharge to below pre-irrigation levels

• Whether these changes are desirable or not depends on the resources being considered
 – Native aquatic species
 – Wetlands and wetland-dependent species
 – Nonnative fish
 – Downstream irrigators
Subdivision seasonal use: mean ± 95% CI

Growing season net ET, 1979-2008

Conclusion: application rates in new subdivisions no different than on agricultural land and no different than ET demand
Major Conclusions

• Canal seepage is primary source of GW recharge in valley locations of HF watershed.
• Application in excess of crop ET is second largest source.
• Conversion to more “efficient” irrigation application has decreased recharge, primarily through decreased diversion into canal system.
• Decreased recharge has decreased GW inflow to rivers
• Decreased GW inflow affects habitat/fish and downstream users.
• Development has removed very little land from crop production.
• Water use rates (depth/season) in new subdivisions are no different than on agricultural lands (and no different than demand).
• But, development can challenge ability of canal companies to continue to maintain and operate canals.
• MAJOR POINT: Changes in amount of water delivered through canals will affect local and regional hydrology and dependent resources. MAKE INFORMED, DELIBERATE DECISIONS!