Quote of the Day:

The evolution of the gull appears capricious, undirected. The more, however, her character suffers as a loiterer, the more it is raised in picturesque value, by her continuing long before the eye; and in displaying, in her elegant sweeps along the air, her sharp-pointed wings, and her bright silvery hue. She is beautiful...giving life and spirit to a view.

William Gilpin
Remarks on a Forest Scenery
London 1794

Competition in the Air: Birds & Aircraft

- Bird-aircraft collisions
- 350 deaths; $$ damage
- USAF aircraft incur 2500 strikes annually
- Civilian aircraft had 5000 strikes in 1999

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost</th>
<th>Count</th>
<th>Cost/Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>$5,452,151.00</td>
<td>2,634</td>
<td>$2,069.91</td>
</tr>
<tr>
<td>1986</td>
<td>$18,079,969.00</td>
<td>2,757</td>
<td>$6,557.84</td>
</tr>
<tr>
<td>1987</td>
<td>$240,977,822.00</td>
<td>2,672</td>
<td>$90,186.31</td>
</tr>
<tr>
<td>1988</td>
<td>$4,000,668.00</td>
<td>2,607</td>
<td>$1,534.59</td>
</tr>
<tr>
<td>1989</td>
<td>$24,862,405.00</td>
<td>3,014</td>
<td>$8,248.97</td>
</tr>
<tr>
<td>1990</td>
<td>$7,800,236.00</td>
<td>2,907</td>
<td>$2,683.26</td>
</tr>
<tr>
<td>1991</td>
<td>$17,994,106.00</td>
<td>2,671</td>
<td>$6,736.84</td>
</tr>
<tr>
<td>1992</td>
<td>$26,025,497.00</td>
<td>2,225</td>
<td>$11,696.85</td>
</tr>
<tr>
<td>1993</td>
<td>$14,471,902.00</td>
<td>2,418</td>
<td>$5,985.07</td>
</tr>
<tr>
<td>1994</td>
<td>$15,734,866.00</td>
<td>2,361</td>
<td>$6,664.49</td>
</tr>
<tr>
<td>1995</td>
<td>$84,803,447.19</td>
<td>2,648</td>
<td>$32,025.47</td>
</tr>
<tr>
<td>1996</td>
<td>$7,752,036.15</td>
<td>3,087</td>
<td>$2,511.19</td>
</tr>
<tr>
<td>1997</td>
<td>$9,070,037.59</td>
<td>2,698</td>
<td>$3,361.76</td>
</tr>
<tr>
<td>1998</td>
<td>$29,397,816.11</td>
<td>3,471</td>
<td>$8,469.55</td>
</tr>
<tr>
<td>1999</td>
<td>$33,611,107.11</td>
<td>3,258</td>
<td>$10,316.48</td>
</tr>
<tr>
<td>2000</td>
<td>$34,540,175.72</td>
<td>3,343</td>
<td>$10,332.09</td>
</tr>
<tr>
<td>2001</td>
<td>$31,758,500.41</td>
<td>3,751</td>
<td>$8,466.68</td>
</tr>
<tr>
<td>2002</td>
<td>$1,458,425.84</td>
<td>483</td>
<td>$3,019.52</td>
</tr>
<tr>
<td>Total</td>
<td>$607,791,168.1</td>
<td>49,005</td>
<td>Average $33,766,176.01 2,723</td>
</tr>
</tbody>
</table>

Why do Collisions Occur?

- Airfields provide attractive resources
- Species differ in ability to evade planes
- Individuals wary of planes but may become acclimated to low traffic & less vigilant
- Quieter, larger, faster aircraft more often hit

Which Birds hit Planes?

- Gulls, especially juveniles
- Juveniles “naïve” to danger
Is There a Dangerous Time?

• Time: morning
• Weather: clear
• Season: migration periods especially when juveniles are present

Minimizing the Problem?

• Pilot awareness …
 1. Scan skies, don’t take off into sun
 2. Lights on in areas of high bird density
• Airport management …
• Aircraft design …
 1. Windshield thickness
 2. Number of engines

Lecture Outline

• Aerodynamic principles
 1. Lift, drag, thrust, gravity
 2. Physics of lift
• Types of flight:
 1. Gliding
 2. Soaring
 3. Flapping

Physics of Flight

• Weight – gravitational pull
• Lift – generated by wing & tail
• Thrust – provided by primaries
• Drag – resistance from:
 • Surface friction =
 • Profile =
 • Induced =
Wing Shape & Lift
- Cambered shape
- Unequal distances of air traveling over dorsal & ventral surfaces

How Lift is Generated
- Static pressure = atmospheric
- Dynamic pressure = kinetic energy of wind
- Bernoulli’s Law
- Static + dynamic = constant

Airplane Parts

Take-off & Landing
Gliding Flight

- Glide ratio = horizontal distance:vertical distance
- 100 m distance: 10 m drop in elevation
- Common Murre on cliff with & without wind

Types of Drag

- Surface friction = leading edge of wing and front of body
- Profile = body shape
- Induced = pressure differences at wing tips

Aspect Ratio

- Ratio of wing length to width
- Adapted to habitat & type of flight
- Variation

Wing Loading

- Mass relative to surface area of the wing
- Bad Gliders?
- Good gliders?
- Vulnerability of migrants with high fat loads
Soaring Flight

- Upward air movement counters downward glide of bird
 1. Thermals
 2. Mountains
 3. Ocean waves

Flapping Flight

- Powered by:
 - Down stroke of perctoralis major
 - Recovery stroke of supracoracoideus

Wing Morphology & Function

- Primaries = thrust
- Secondaries = lift
- Coverts = protection

Hummingbird Flight

- 180° shoulder rotation of humerus
- Dorsal & ventral wing surfaces generate lift
Conclusions

- Aerodynamics of flight similar to planes
- Lift & thrust countered by gravity & drag
- Species morphologies vary with lifestyle
- Gliders, soarers & flappers