RELATIONS FOR STREAMLINES AND EQUIPOTENTIALS

1. VELOCITY POTENTIAL
 a. Velocity potential Φ is defined as:

 $$\Phi = Kh \quad \text{where} \quad K \text{ is constant}$$

 $$\Phi = f(x,y,z)$$

 The units of Φ are L^2/T

 b. Then

 $$-\nabla \Phi = -K \left(\frac{\partial \Phi}{\partial x} \mathbf{i} + \frac{\partial \Phi}{\partial y} \mathbf{j} + \frac{\partial \Phi}{\partial z} \mathbf{k} \right) = \mathbf{q}$$

 where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors in the x, y, and z directions respectively

 \mathbf{q} is the specific discharge or Darcy velocity vector

 $\nabla \Phi$ has units L/T

 c. The components in each direction of the specific discharge vector \mathbf{q} are:

 $$q_x = -\frac{\partial \Phi}{\partial x} \quad q_y = -\frac{\partial \Phi}{\partial y} \quad q_z = -\frac{\partial \Phi}{\partial z}$$

 d. For two dimensions, equipotentials are lines where $\Phi(x,y) = \text{constant}$

 e. In two dimensions, the slope of an equipotential is:

 $$\left(\frac{dy}{dx} \right)_{\Phi} = -\frac{q_x}{q_y}$$

2. STREAMFUNCTION AND STREAMLINES

 a. The streamfunction, ψ, is defined as a function which is everywhere tangent to \mathbf{q}. Specifically

 $$\psi = f(x,y,z)$$

 ψ has units L^2/T (or L^3/LT)

 b. In two dimensions, streamlines are lines where $\psi(x,y) = \text{constant}$.

 c. In two dimensions, the slope of a streamline is:

 $$\left(\frac{dy}{dx} \right)_{\psi} = -\frac{q_y}{q_x}$$

 d. In two dimensions, the components in each direction of the specific discharge vector \mathbf{q} are:

 $$q_x = -\frac{\partial \psi}{\partial y} \quad q_y = -\frac{\partial \psi}{\partial x}$$

 e. Between adjacent streamlines, the discharge (per unit of length normal to the x,-y plane), ΔQ, is given by:

 $$\Delta Q = \Delta \psi = \psi_2 - \psi_1$$

 f. The differential expressions for the components of \mathbf{q} show that streamlines and equipotentials must always be orthogonal in homogeneous isotropic media.
EXAMPLE: DERIVATION OF EQUIPOTENTIALS FROM STREAMFUNCTION

PROBLEM: given \(\psi = x + 2y \), find \(\Phi \)

1. Remember
 \[q_x = -\frac{\partial \Phi}{\partial x} \quad \text{and} \quad q_y = -\frac{\partial \Phi}{\partial y} \]
 but also
 \[q_x = -\frac{\partial \psi}{\partial y} \quad \text{and} \quad q_y = -\frac{\partial \psi}{\partial x} \]

 Thus
 \[\frac{\partial \Phi}{\partial x} = \frac{\partial \psi}{\partial y} \quad \text{and} \quad \frac{\partial \Phi}{\partial y} = -\frac{\partial \psi}{\partial x} \]

2. Taking partial differentials of \(\psi \):
 \[\frac{\partial \psi}{\partial x} = \frac{\partial (x + 2y)}{\partial x} = 1 \quad \frac{\partial \psi}{\partial y} = \frac{\partial (x + 2y)}{\partial y} = 2 \]

 Thus:
 \[\frac{\partial \Phi}{\partial x} = 2 \quad \frac{\partial \Phi}{\partial y} = -1 \]

3. Integrating each of these expressions with respect to the appropriate variable:
 a. \(\Phi = \int \frac{\partial \Phi}{\partial x} \, dx = \int 2 \, dx = 2x + f(y) \)
 b. \(\Phi = \int \frac{\partial \Phi}{\partial y} \, dy = -1 \int dy = -y + g(x) \)

 \(f(y) \) is added to 3a because \(\Phi \) is a function of both \(x \) and \(y \), and we integrated only with respect to \(x \);
 \(g(x) \) is added to 3b because \(\Phi \) is a function of both \(x \) and \(y \), and we integrated only with respect to \(y \)

4. We need to evaluate \(f(y) \); to do this we differentiate 3b above with respect to \(y \):
 \[\frac{\partial \Phi}{\partial y} = \frac{\partial (2x + f(y))}{\partial y} = \frac{df}{dy} \]

 But in step 2 above we found that \(\frac{\partial \Phi}{\partial y} = -1 \); hence \(\frac{df}{dy} = -1 \)

 Integrating this to find \(f \):
 \[f = \int df = - \int dy = -y + \text{constant of integration} \]

5. Thus by substitution into 3a
 \[\Phi = 2x - y + \text{constant} \]
 The constant is arbitrary and can be set to zero.

6. Thus our final expression defining the equipotentials is:
 \[\Phi = 2x - y \]